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Convergence of product integration rules based on Hermite-Fejer interpolation
with end conditions is shown for all Riemann-integrable functions when the inter
polation points are zeros of generalized Jacobi polynomials even in cases where the
corresponding Hermite-Fejer operator is indefinite. ~, 1994 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with the convergence of product integration (PI)
rules based on Hermite-Fejer (HF) interpolatory polynomials with end
conditions. We consider PI rules of the form

I(kf) :=rk(x) f(x) dx ~ I(kHnpq(w;j)),
-I

(1)

where k E L1(J), J:= [ -1, 1], fE R(J), the set of all (bounded) Riemann
integrable functions on J and Hnpq is an HF interpolating polynomial with
end conditions previously studied by the authors [8, 10] and Knoop [2].
Here, p and q are nonnegative integers and w is a generalized Jacobi (GJ)
weight function of the form

rx,P> -1, (2)
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where l/J > °and l/J' E Lip 1 on J and w ~P is the Jacobi weight function
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(3)

PI based on HF polynomials was first studied explicitly in [1] although
certain results already appear implicitly in [4]. Further works on the sub
ject appear in [3,6, 7].

In this paper, we are interested in giving conditions which ensure that

I(kHnpq(f)) ~ I(kf) as n ~ 00 for all k EL1(J) (4)

whenever jE R(J). Now, in general, convergence results for PI follow
readily from convergence results for HF interpolation of the form

as n ~ 00. (5)

However, such convergence results hold only for jE C(J). If we wish to
deal with R(J), we must introduce additional devices. The simplest situa
tion occurs when H npq is a nonnegative operator. In this case, it has been
shown in [6] that if(4) holds for alljEC(J), then it holds for alljER(J).
However, there are situations where (5) holds for alljE C(J) but H npq is an
indefinite operator. This occurs, for example, when w = w~p and

satisfy the conditions

a:= 0( - p,

-1.5~a, b<O,

b:= fJ - q

la-bl ~ 1 (6)

as shown in [2, 10]. (If p = 0, the inequality for a is a> -1 and similarly
for q and b. This holds also in (7) and (8).) If

-1 ~a, b<O (7)

then H npq is a positive operator so that there are no problems but (6) is a
weaker condition.

To deal with indefinite operators, we introduce the HF-related operator
Snpq which is positive and "close" in some sense to H npq . We then show
that if w = w~p and

then

- 1.5 < a, b < 0, la-bl~1 (8)

I(kSnpq(f)) ~ I(kf) (9)

whenever jE C(J) and consequently, whenever jE R(J). Using this result,
we can prove that if w = w~P and (8) holds, then (4) holds for all j ER(J).
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We cannot extend this to the case where (6) holds since it has been shown
in [1 J that in the particular case p = q = 2, k == 1, and a or b = -1.5, (4)
does not hold for all fE R(J).

Returning to our work, we notice that once we have this methodology,
namely, of using close operators for which convergence is known, we apply
it to prove (4) for all GJ weights for all f E R(J) and all a, b satisfying (8).
On the way, we show that (5) holds for all fE C(J) and all a, b satisfying
(6). This is in itself a noteworthy result since the best that has been shown
explicitly to date in [5J is that (5) holds when p=q=O and (7) holds,
although implicit in [5J are results for any p and q together with (7).

In Section 2, we give the necessary background information. In
Sections 3 and 4, we discuss the convergence to l(kf) of l(kSnpq ) and
l(kHnpq ), respectively, when IV = w,p. In Section 5, we discuss the case
where w is an arbitrary GJ weight function and in Section 6, we make some
concluding remarks.

2. BACKGROUND MATERIAL

Let p, q be integers ~O, let IV E GJ, and let X n := {x in : i = 1, ... , n} be the
set of zeros of pn(w), the polynomial of degree n belonging to the sequence
of polynomials orthonormal with respect to w. We order the zeros in
decreasing order so that

XOn := 1>Xln> ... >xnn >xn+1,n:=-1.

The HF [2J polynomial with end conditions, Hnpq(w;f) = Hnpq(f), inter
polating a real-valued function f on J at the points X n is a polynomial of
degree 2n +p + q - 1 satisfying the conditions

Hnpq(f; x in )= fin := f(x in ),

H~pq(f; Xin ) = 0,

Hnpq(f; XOn ) = fo := f(x on )

Hnpq(f;xn+i,n)=fn+J :=f(Xn+l,n)

H~)q(f; XOn ) = 0,

H~)Jf; X n + I.n) = 0,

An explicit form for Hnpq is given by

i= 1, .." n

i= 1, ..., n

if p>O

if q>O

r = 1, , p - 1 if p> 1

s=I, ,q-l if q>1.

n

Hnpq(f; x) := I V,npq(X) ajnpq(x) fin + t/J npq(X) fo + If;npq(X) fn + I' (to)
i~J



i= 1, ..., n

i= 1, ..., n

where
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(
1 - X)P ( 1 + x )q

ainpix );= 1 _ X
in

1 + X
in

l;n(x),

I ( ).= Pn(w;x)
In X. ( )' ( )'x - Xin Pn w; Xin

() 1 (P q p~(w; X in ») ( )vinpq X ;= + ------,. X-Xin
1 - x in t + Xin Pn(w, x in )
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(11)

(12)

(13 )

and ljJ npq' ifi npq are polynomials of degree 2n +P + q - 1 which satisfy the
conditions

i= 1, ..., n

if q>O

ljJ~pq(Xin)= ifi~pq(Xin) = 0, i = I, ..., n

ljJnpq(XOn) = t if p>O, ifinpq(xn+1,n)= t

ljJ~~~(xon)=O, f= 1, ,p-l if P> 1

ljJ~)q(Xn+l,n)=O, r=O, ,p-l

tii~;1q(xn+l,n)=O, s=I, ,q-1 if q>1

tii~iq(Xon)= 0, s = 0, , q - 1.

The explicit forms of the functions l/J npq and tii npq are not needed in the
sequel. What is important are the facts shown in [2] that

and that

onJ (14 )

n

L Vjnpq(x) ainpq(x) + l/Jnpq(x) + tii npi x ) = 1.
i~l

(15 )

Note that for P, q E {O, 2}, the polynomials H npq(f) coincide with the classi
cal HF polynomials. Thus Hnoo(f) is the classical HF polynomial based on X n
while Hn22(f) is the classical HF polynomial based on Xn U {XOn ' xn+1• n}.
Similar identifications can be made for H n20(f) and H n02(f).

Closely related to the operator Hnpq(f) is the positive operator Snpq(f)
defined by

n

Snpq(f; x) ;= I finainpq(X).
i= 1

(16)

In the rest of this paper we assume that the values of P and q are fixed
throughout the discussion. Hence we write H n, Sn, Vin, ain' l/Jn, and tiin. We
also use the notation A n(x)=o(l) to mean that AAx)-+O as n-+oo
uniformly in J. Similarly, the notation An(x) = 0(1 )b' means that An(x) -+ 0
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as n -> CIJ uniformly in Jij:= [ -1 + <5, I - <5] where <5 is any number in
(0,1). We also write Iij(g):= ft_l:ij g(x) dx and fij(g):= I(g) - Iij(g).

The importance of positivity of Sn for product integration lies in the
following result:

PROPOSITION 1. Consider the product integral I(kf) where k E Lt(J) and
let Bn be an operator on J of the form

If

"
Bn(f; x) := L bin(x) h,I'

i= l

where bi" ~ 0 on J, i= 1, ..., n.

(17)

for all fE C(J) and all k ELt(J), then (17) holds for all fE R(J).

Proof This is similar to the proof of Theorem 1 in [6].

We now introduce the concept of (p, q)-p-normality where the set
X" c (-1, 1) is said to be (p, q)-p-normal for some p > 0 if v inpq ~ P > °on
J for i = I, ..., n. By (14), this implies that the HF operator H npq based on
a (p, q)-p-normal set is a positive operator. An example of a (p, q)
p-normal set is given by the set of zeros of the Jacobi polynomial p,,(w"/l)
where a., f3 satisfy (7) and p > 0 is some number depending on a., f3, p, q.

In a previous work [8], the authors showed that if {Xn } is a sequence
of (p, q)-p-normal sets, with the same value of p, then, for all fE C(J)

f(x)- Hn(f; x) = 0(1)

f(x) - S,,(f; x) = 0(1 )ij.

(18)

(19)

Clearly, for all f E C(J), (4) holds and by Proposition 1, (4) holds for
all fE R(J). We show a similar result for I(kSn(f» as a corollary of the
following proposition:

PROPOSITION 2. Assume that for allfEC(J), (19) holds and that

for all n. (20)

Then (9) holds for allfER(J).

Proof Let /; > 0 and assume first that fE C(J). We have that

II(k(Sn(f)-f)1 ~Iij(lkIISn(f)-fl)+lij(lkl(ISn(f)1 + Ifl»

~ (max ISn(f; x) - f(x)l) I( Ikl) + (A(f) + F) lij(lk I),
XEJa
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where F:= Ilflloo. Since kEL}(J), we can choose (j such that !~(Ikl)<

eI2(A(f) + F) and then from (19), (9) holds. We then apply Proposition 1
to prove (9) for fE R(J).

COROLLARY 1. If {Xn } is a sequence of (p, q)-p-normal sets, then (9)
holds for all fE R(J).

Proof We need only show (20) for aIlfE C(J). But by (14), (15), and
the nonnegativity on J of the functions ain' we have that

n

L ain(x) ~ lip
j~ }

which implies that II Sn(f) II ex; ~ Ilfll oolp which proves Corollary 1.

We thus have that both (4) and (9) hold for all fER(J) if {Xn } are
(p, q)-p-normal sets. Since the convergence properties of H n are better than
those of Sn, it makes more sense to use Hn for product integration even
though the algorithm for evaluating I(kSn(f» is simpler than that for
I(kHn(f» [6]. In the next section, we consider interpolation based on sets
which are not (p, q)-p-normal in which case we can only show at the
moment that (4) will hold only for f EC(J). However, we show that (9) still
holds for all fE R(J).

In Section 4, we return to I(kHn(f» and using the results of Section 3,
show that (4) also holds for all f E R(J) when »' = W ,p'

3. CONVERGENCE OF I(kSn(f» FOR W = Wop

In [2, 10] it was shown that if X n is the set of zeros of Pn(w,p) that
satisfy (6) then for aIlfE C(J), (18) and consequently (4) holds. However,
ifa,b satisfy (6) but not (7) so that the X n are not (p,q)-p-normal, then
one cannot apply Proposition 1 to show that (4) holds for all f E R(J), In
this section we show that, with slightly stronger conditions on a and b,
both (19) and (20) hold for alIfE C(J) which will imply, by Proposition 2,
that (9) holds for all f ER(J),

THEOREM 1. Let p and q be nonnegative integers, let w = w,p, and let a, b
satisfy (8), Then (19) and (20) hold for every fE C(J). Consequently, (9)
holds for all fE R(J).

Proof Since (18) holds, it follows that

f(x) - Hn(f; x) = 0(1 )~,
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Thus, to show (19), it suffices to show that

n

H,,(f; x) - S,,(f; x) = L (viAx) - 1) ai,,(x) lin + 1jJ,,(X) 10 + t/i,,(X) In+ 1

i= 1

(21 )

or that

and

A,,(x) := I 1(1- Vi,,(x))1 ai,,(x) = 0(1)".
i=l

(22)

(23 )

We first show (23) using the methodology of [9J, and the results of [10,
(4.1); 4, Lemma 2].

Consider first A ,,(x) for some x E J" for a fixed 0 > O. Then, for all n ~ no,
if x ~ Xj" then j '" n. Let x ~ 0, say, and set K:= n - k + 1. We then have
that

{[

1/·2
1 J

·2a + 2 ·2
A In ~ .2a + 1 J IJ

J logjlj2

if 2a + 1< - I ] }
if 2a + 1> -1 + j2a logj + j2a

if 2a + 1 = -1

if -1.5 < a < 0

if b> -I}
if b = -1

if b<-l

if - 1.5 < a < 0, - 1.5 < b, a - b ~ 1.
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Thus, if (8) holds then (23) holds. Hence
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H,,(f; x) - S,,(f; x) - tjI,,(X) !O-!/i,,(X) !,,+ 1= 0(1)0 (24)

whence, setting!= 1,

n

1- L: a jn (x)-tjln(x)-!/in(x)=o(l)o.
;=1

(25)

If we now show (22), we will have proved (19). To this end, we first prove
the following lemma.

LEMMA 1. For any ,,>0, Llx_x.. I;>~ain(x)=o(I)J'

Proof We first prove that

n

Bn(x):= L a;n(X) Ix-x;nl =0(1)0'
i= 1

(26)

In fact, if x ~ X jn , then using the same methodology and notation as above,

C[ n k
2a

+
3 n n K 2b

+
3J

Bn(x)~- L 2a+4Ik_ '1 + L~ =0(1)0'
n k~l n J K~l n

k#j

where we have used the fact that j,..., n. Hence

Bn(x) = L Ix-x;,,1 ain(x) + L Ix-x;nl a,n(x)=o(1)O"
Ix-x",I<:~

Since a;,,(x) ~ 0 in J, it follows that

which proves Lemma 1.

We now choose" such that y := 1 - [) +" < 1 and define FE eeJ) by

{
O,

F(x)=
(x - y)/([) - ,,),

Then by (24), H n(F;x)-Sn(F;x)-tjln(x)=o(1)O" Since F=O in Jo,
Hn(F; x) = o( 1)0 and °~ Sn(F; x) = LXi.;> yF;na;n(x) ~ (1/,,) LXi. ;>_y a;n(x)
IX-Xi"I~(I/'l)B,,(x)=o(t)o' Hence 1jI,,(x)=o(1)o' Similarly ljI,,(x)=
0(1 )° proving (19).
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To prove (20), let x ~ -1/2, say. Then

= 0(1).

(Here, as well as in the estimate above for AI", we have decomposed the
sum into three summations, from 1 to j/2, from j/2 to 2j, and from 2j + 1
to n.)

since a < 0 and b> - 1.5.

A similar result holds for x ~ - 1/2. This proves (20). The last statement in
Theorem 1 then follows from Proposition 2.

We remark that we have shown that (20) holds for all bounded f and
not only for continuous f

4. CONVERGENCE OF J(kHlI(f» FOR W= W~p

We are now in position to prove a theorem corresponding to Theorem 1
for J(kHlI(f».

THEOREM 2. Let p and q be nonnegative integers, let W= W~p satisfy (8).
Then (4) holds for all f E R(J).

Proof We need only show that

for then we have that

IIHlI(f)II-.o = 0(1) (27)
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11= 0(1) by Theorem 1, and 12= 0(1) as in the proof of Proposition 2 using
(21), (20), and (27).

The proof of (27) is given in the following lemma which is a little
stronger than required in the above proof.

LEMMA 2. Assume that Ilfll x = O( 1) and that

- 1.5 ~ a, b ~ 0, la-bl~l, (28)

then (27) holds.

Proof Assume first that (8) holds. Then, if x ~ 0, say

" " "I IVk,,(x)1 ak"(X) ~ l.: Ivk,,(x) -11 ak,,(x) + I ak,,(.x)
k~1 k~1 k=l

By the formulae in the proof of Theorem 1, it follows that A,,(x) = 0(1).
Further, with K:= n - k - 1

Here, D" ~ A 2" = O( 1), where A 2n has been defined above, and

Now, let a = 0, say. Then b ~ -1 so that X n is (p, q)-normal, i.e., Vi"pq ~ 0
on J for i= 1, ..., n. Then (27) follows from (14) and (15). This completes
the proof of Lemma 2 and hence of Theorem 2.

5. CONVERGENCE RESULTS FOR WE GJ

In this section we prove convergence theorems for (4) and (9) when
W = Ijnv~{i E GJ with t{I ~ 1. In this section H,,(f) will mean H lI(f; w)
and H,,(f) will denote H,,(f; w~/i)' and similarly for other quantities; for
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example, the sets {Xkn} and {Xkn} are the zeros of Pn(x; w) and pAx; waP )'

respectively. We also need the Christoffel function A. n ( w) defined by

Our first theorem corresponds to the (p, q)-p-normal case.

THEOREM 3. If (7) holds, then (4) holds for all fE R(J).

Proof By [10, Sect. 4.2], for any a, P> - 1

_ a - b + (a + b + 2) xkn _
Vkn(X) = 1 - 1 -2 (x - Xkn),

-xkn

By [10, (3.5); 5, (3.9)], for any a, {3 > -I

{
P q A;,(W;Xkn )]

Vkn(X) = 1+ -1----1-- + , (" ) (x- x kn )
- Xkn + Xkn An W , Xkn

=(by [5, Lemma 4.3]) 1 + [_P---q-
I-Xkn l+xkn

_a-{3+(a+{3+2)Xkn C J( - )
1

2 + kn X Xkn
-X kn

1~k ~n.

where Ckn = 0(1), 1~k ~ n.

If we now define

n

HnU;w;x):= I Vkn(X) akn(W; X)fkn + t/Jn(x)fo + l[Jn(x)fn+ I

k~l

and

/I

gnU; w; x):= L CkJknakn(W; x)(x - Xkn ),
k=l

then

HnU; w; x) = HAf; w; x) + gnu; w; x), a, {3 > -1. (28)

If (7) holds, it is easy to see that Vkn > 0 on J, 1~ k ~ n so that H n is a
positive operator. If we can show that gnU) = o( I) for bounded f, then it
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will follow that Hn is close to a positive operator on the set of functions
bounded on l. This results follow from our next lemma.

LEMMA 3. If (7) holds, then

n

Bn(x):= L akn(w;x)lx- Xknl=o(1).
k=1

Proof As in the proof of Lemma 1

:= II + 12 , where X';:::: xjn and K:= n - k + 1,

1 [ .2a + 4 J' I .
I }. 2a + 2 I . '2a C} og} (1 )
I'" 2.2 +1 -'2-+} og}+} < _.-2-=0

n J a } n

We now show convergence of Hnpq(f) for continuous functions.

LEMMA 4. If (7) holds, then for all fE eel), (5) holds.

Proof We use an improvement of [10, Theorem 3.1] (cr. [8, (21) and
(22)]) that (5) holds if

n

L !vkn(x) akn(x)1 = 0(1)
k ~ 1

n

L jakn(X)(x-xkn)1 =0(1).
k~1

Equation (30) is the result in Lemma 3. To show (29) we write

(29)

(30)

n n

L: lakn(X) vkn(x)1 ~ L: akn(X) Vkn(X) + 1l,,(x)l. (31)
k~ I k~ I

The sum in the right hand side of (31) can be shown to be O( 1) as in the
proof of Lemma 1 and the fact that 1c,,(x)1 = 0(1) follows from (30), which
proves (5).

From (25) and Lemmas 3 and 4, it follows that if (7) holds, then

lIit(f) - fll oc = o( 1)
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for fE C(J). Hence, since FIn is a positive operator,

I(k(FIn(f) - f)) = 0(1)

for all fE R(J). Since

and gn(f) = 0(1) for all fE R(J), our theorem is proved.

We conclude this section with two theorems for WE GJ corresponding to
Theorems 1 and 2.

THEOREM 4. Let p and q be nonnegative integers, let W = IjJwap E GJ, and
let a, b satisfy (8). Then (9) holds for allfER(J).

Proof This is as in the proof of Theorem 1, using Hn instead of Hn'

THEOREM 5. With the same hypotheses as in Theorem 4, (4) holds for all
fE R(J).

Proof This is as in Theorem 2, using H nor FIn instead of Hn := Hn(w ap ).

6. CONCLUDING REMARKS

In this paper, we have proved convergence results for product integra
tion which are valid for all k ELI (J). If we place some restrictions on k, we
can get stronger results. Thus, for the case p = q = 0, it has been shown in
[4, Theorem 5] that if WE GJ and fE C(J), then

Hence, if Ilk/wli x ~ c,

Ilw(f- Hn(fm 1= 0(1).

I(kHn(f)) -+ I(kf)

(32)

(33)

as n -+ CJJ for all fE C(J). A similar situation occurs for p = q = °when a'
is a Freud or Erdos weight on the real line and we use the L 1 convergence
results in [3].

We also have the results in [1] for the case where Ilklloc~C, namely
that if WE GJ, P = q = 0, and - 1 < IX, f3 < 1 or if p = q = 2 and 1/2 < IX, f3 < 1
then (33) holds for allfER(J).
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Finally, using [4, Theorem 2], we have a convergence result for unboun
ded functions, namely, that if 11' E GJ, p = q = 0, and fE R(Jo) for every
fJ E (0, 1) and satisfies

If(x)! ~ CW,'o(x) in J,

where '}', b are arbitrary, then II w(f- Hn(f)) III = 0(1) provided that

wW,'o(1 - X2 )1!4 E LI(f).

Hence, if Ilk/wil x ~ A then (33) can hold for functions with singularities at
the endpoints.
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